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We study the eflects arising fromrelativistic perturbations 011 the motion of aster -
oids and comets and show that for a number of such objects, inclusion of relativistic
contributions in the equations of motion gives rise to significant improvements in the
orbital solutions. Furthermore we argue that ignoring relativistic corrections to the
equatjons Of motion, while using masses derived from relativistic ephemerides yields
incorrect solutions corresponding to an inconsistent, non-Newtonian, non-relativistic
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LINTRODUCTION

Relativistic effects, arising from the theory of generalrelativity (Ilinstein 191 5)are
important in modeling the dynamics of comets and asteroids it the inuer solar systeim,
In attempts to verify the predictions of general relativity, Shapiro et al. (1 968),
Licske and Null (1969), and Shapiro (1971) found that the non-Newtonian motion
for asteroid 1566 lcarus was consistent with the predictions of gencral relativity but
orbital solutions for lcarus were of marginal use for determining the solar quadrupole
moment 01’ the mass of Mercury. Using observations over theinterval 1949 through
1968, these authors pointed out that orbital solutions for Icarus using relativistic
cquations of motion provided significantly improved results. Sitarski (1 992) reached
the same conclusion when he updated the orbit of Icarus using the optical observations
from 1949 through 1987.

The generic first order relativistic effects are of order v2/c¢2 ( GMs/rc2), where ¢
is the speed of light, v and r are repectively the speed of the object and its distance
from the Sun, G is the gravitational constant and Ms is the solar mass. Thus, the
fractional first order relativistic eflects at about 1 AU are of the order of 1x10-8. The
currenit positional measurcement accuracy for asteroids and comets is of the order of a
few tenths of a sccond of arc. Ior one orbital period of asteroid learus, the perihelion
precession is about the same. For some asteroids and comets with eccentric orbits,
simall seii-major axes, andlong observational dataintervals, relativistic cflects will
be necessary to properly fit the observations.

We have used all the avail able optical and radar data to iimprove the orbits of
six asteroids, including Icar us, whiose motions are significantly modified by the ef-
feets of general relativity. In addition, we will show that even when the orbital rims
residuals are not improved when relativistic equations of motion arc substituted for

the comm nonily used Newtonian equa tions, significant orhital errors for ma ny aste -
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oids and comets will be avoided when relativistic equations of motion are employed
in conjunction with modern pla ncta vy ephemerides. Since relativistic corrections are
often incorrectly assur ned negligible in the motions of asteroids and comets, we will
beginwithan overview of the various relativistic cffects that come into play during

the orbit determination p rocess.

11. RELATIVISTIC EFFRECTSINMEASUR FMENT MODELS

Measurements of the position of an asteroid or comet are currently performed
using cither optical or radar telescopes.  In such measurer nerits, relativistic cffects
arc most prominent only when the line-of-sight grazes the Sun.  Although optical
obscrvations are not possible ncar the Sun, radar observation nodels may have to be
modified by the relativistic time delay due to the propagation of the radar signal in
the gravitational potential of the Sun (Shapiro 19640, Standish 1 990). llowever, for
the processing of current asteroid and comet radar observations, these corrections are
usually much sinaller than the errors in the delay mcasurements thiemselves (Yeom ans

cl. al. 1 992).

111 RELATIVISTICEFFECTSINTHE EQUATIONS OF MOTION

T here are a number of relativistic effects which contribute to the motion of a
comel o1 asteroid. Here we consider a simple model of an asteroid or comet falli ng
freely in the gravitational field of the Sun. We ignore all eflects arising from the
planctary perturbations. These can be included in a straightforward manner inamore
genieral schieme but at the moment we note that the largest relativistic effects arise
fromthepresence of the SUN. The metric tensor for a single spherical ly-symmetric
gravitational source ¢an be written as the slow-motion, weak-ficld approximation O f

the Schwarzschild (1 916) metric:
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11( e 77 is the Sc ywwarzschild radius of the Sun given in terms of the post-Newtlonian
mass of the SUnN 1 - GMpn/c® = GM,/c? = 1.5 kin and 1 is the object’s distauce
from the Sun. The first two terms in goo and the first termin gij give rise tothe
Newtlonian gravitational force. T'hie last term in gao provides 1/3 of thie relativistic
precession of the orbital line of apsides, or perihelion. The goi components of the
metric represent contribut jons arising from the mmotion of the source. Inthe case of
a single object freely falling in the field of the Sun, the Sun’s velocity is negligible.
If one Were toinclude the planets as gravitationalsources, asinthe J'], ephemeris
developineut models, these terms would have non-negligible contributions. The last
term inggj represents the curvature of space. ‘I'histerm provides 22/3 of the periliclion
precession effect and other curvature eflects such as the 19 Illilliarcscc/year geodetic
precession of the ecarth’s inertial frame (Lieske ef. ol 1 {)77; Shahid-Saless and Ashby
1988).
The cquations of motion for an object freely falling in the gravi tational ficld
described by the above metric can be derived from the least act ion principle. The

invariant intervalin four dimensions is given by:

ds’= - gda’da” (3.4)
2
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where g and v are the space-time indices running from () to 3, 7 and j are the
sha ial coordinate indices running from | to 3 and the Finstein summination convention

is uscd. The classical action A is theintegral of dsalong the path of the particle.




A= mc / ds (3.6)
Jpath

ds -
path iy

where mis the mass of the particle ill motion. 1°1'0111 classicallLagrangianformalism
we know that the action is the integral of the Lagrangian 1. over time, along the path

of the particle:

A= Lda® (3.8)
path

Thus comparing Eq. (2.8) with 15q. (2.7) and using I'q. (2.5), the Lagrangian is given
by:
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where vf = da'/d2®. Tlic equations of motion can now be derived using the Fuler-

Lagrange cquations:

d (a1 ol
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We get:
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which agrees with the single-source relativistic equations of motion used in modeling
solar system dynamics (Anderson ef. al. 1975, Moyer 1971). We can see that the
first term on the right hand side of the above equation is the Newtonian gravitational
acceleration. The remaining terms are the relativistic corrections which, in part, give
rise to therelativis tic precession of the perihclion. The relativistic advance of the
perihelion can best be derived using the Hamiltonian formulation of the equations of

motion. The canonical momenta are given, to the desired order of acc uracy, by:
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The Hamiltonian is now given by
H=n-v-1L (3.14)
;zlf | :’ | ({f)z »;[w?»l 2;’_’]2- ’7’7# (3.15)

The first two terms in the total Hamiltonian correspond to the Newtonian gravita-
tional force. We can now treal the remaining terms in the Hamiltonian as a per-

turbation 11;. This perturbation depends only 011 three orbital elements; the mean

anomaly M, the sciniinajor axis « and the cccentricity €. Onie can rewrite [/, as:
2 2 2
I H oM 216
Hy= - 20 - 3§ 3.1¢
! 2a? I ra 72’ (3.16)

where we have used the energy conservation equa jon:

2 1
2 o o1~
v t - - - 3.17
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The advance of the argument of per hiclion i's now given by (Bertotti and Farinella
1{)90):
]
dw 1- ¢z 91
- el (3.9
dt na’c  Je
noting that »: a(1-- ccos IY), IV being the eccentric anomaly and n being the mean

: 4 Al 1 . . 3 - . . .
motion 27 /1'. The first two terms in Fq. (2.16) do not give rise to a sccular advance
i the argument of perihiclion. The contribution of the last term can be caleulated by

averaging over one period and noting that

/27‘ dly ) 2
Jo 1. ccosls V12

(3.19)

6



We get:

Aw: - 00 (3.20)

or Aw = 0.0384 /a(1 - C°) arc seconds per revolution when a is in astronomical units.
Since most observations of aster oids and o1 nets at this time are optical angular
positions, the perihelion precession is perhaps the most measurable effect. This eflect
is most noticable for cccent ric orbits Wit h sinall semi-major axes. One canconmpute
the magnitude of the periliclion advance for al currently known asteroids and cornets
to sce whether relativistic eflects should bhe included inmodeling the dynamices of such
objects. For the 15 objects most aflected by relativistic perturbations, ‘J able 1 gives
t}ie namme and nw nber of the asteroid followed by its amount of orbital precession
(perihelion) per year. The next three columms give the nuinber of years for which
obscrvations exist , the orbital period and the total relativistic precession to mid- 1993,

Assuming that the current accuracy in determining the angular position of an
asteroid is a few tenths of a sccond of arc,the relativistic contribution to precession

of the perihelion should be clearly detectable for the asteroids near the top of the list.

IV. RELATIVISTIC V.S. NEFWTONIAN DYNAMICS

The Schwarzschild metric is the vacuum solution to the spherically symmetric
Finstein’s field equations, relevant only when there exists a single gravitational source.
I'or the motion of solar system bodices, the appropriate metric to use is the many-
body post-Newtonian metric such as the one devised by Will and Nordtvedt (1972).
This metricis the weak-ficld, slow-motion solution to Finstein’s field equations for an
arbitrary nummber of sources and thus a bhetter representation of the solar system. 1'he
JPL planctary ephemeris development program utilizes the point-inass version of the

post-Newtonian metric to include relevant relativistic effects in the solar system. T'he
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solar system paramecters derived by this development eflort are therefore accurate to
post-Newtonian order. In comparing the observed positions of comets and asteroids
with those predicted from theoretical inodels, one mmust also realize that the mass of
the Sun deterined by the solar system epheineris effort includes not only relativistic
corrections arising from the post-Newtonan formulation of the equations of motion,
but also includes corrections devised by the IAU to keep the relativistic cquations
of motion in the barycentric frame simple. Correct jons arising from the 1AU choice
of coordinatles need be utilized in the definition of space-time coordinates which we
will consider shortly. Corrections to the Newtonian equations of motion arvising {from
post-Newtonian formulation are of the form of 19q. (?.11). Discrepencies arisin g from
exclusion of the relativistic corrections can bie understood by comparing lq. (2.11)

with Newton’s seccond law:

d’r GMn

1

diz T3 (4.1)
where My would be the mass of the Sun derived from Newtonian ephem erides. Com-
parison with Eq. (2.1 1 ) shows us thiat if one were to use the post-Newtonian mass,
usedinliq. (21 1) inNewton’ssccondlaw, a fit to data could still be made because
the leading terms have the same functional 1 /2% dependence 011 r. However, the ne-
glected terms il Iiq. (2.1 1) would stillcontribute 011 average by a significant arnount.

T'hus the fit would vicld a semi-imajor axis that is incorrect by anamount:
\ | A

1 v?
[4- -

20 p c?

ba: a,- a,, =~ Va, =10 %a, (4.2)

This would be in addition to whatever error came about by not having modeled
the relativistic precession of perihelion.  Of course one remedy for correcting t] e
scmi-major axis to post-Newtonianor-der is to rescale the solar mass. 15 this way

the Newtonian equations of motion would, on the average, agree with the relativistic



version except for the fact that the relativistic preeession of perihelion would still not
be modeled. Hence, the orbital determination of objects using Newtonian equations
of motionbut utilizing the solar mass derived from JP’1L planctary ephemerides (.
c. Mypp) will in general have inconsistencies. Thus althought the motions of many
asteroids and €olnets may not be sensitive to true relativistic effects, their dynamical
modeling, if not relativistically formulated, is in error.

As mentioned carlier, corrections arising, from the choice of using DB coordinates
arc also important in correct dynamic modeling of solar system objects. Relativistic
cquations of motionarc usually writteninterms of the Post-Newtonian coordinates,
defined by the post-Newtonian formalism developed by Will and Nordivedt (1 972).
This choice of coordinates is only a matter of convention since Finstein’s field cqua-
tions are generally covariant and thus physical mmcasurciments are independent of the
choice of coordinates. Nevertheless according to the IAU convention, the barycentric
time. (13pp) is to be related to an ideal Earth-borne clock time (1) by a periodic
cocflicient, nainely (1lellings ] 986)

2 )2

1o 12
lypp = (1 U 9w (U -+ '2-(:?))1),;. (4.3
Here U is the total gravitational potential on the Farth’s su rface. The Post-
Newtonian tiine coordinate, which is used in the modeling of the motion of the pla cts,

is related to TDRB by:

topp: (1- U ]"?)1
rpn o 2 HIN- 4.4)

In order to keep the equations of light propagation unchanged (i.e. keeping t he

speed of Tight constant) one has to also rc-scale the spatial coordinates such that

1 v?
(1(177'])1;: (] U - }.),-(:2 )(](I‘]'NE (] - ]/)(/.’l']-]\r. (4.5)



However this will enter the equations of motion of ordinary matter by re-scaling the

components of the metric tensor:
g N 2 ny
o= (- L)gin. (4.6)

In turn, this will affect the post-Newtonian equations of motion unless one re-
scales all the masses. 1f one tries to keep the form of the post-Newtonian equations

unich anged, the TDB masses have to he M-scald with respeet to PN masses by:
Mypp = (13- 1L)Mpy. (4.7)

The magnitude of 1,is1.55052 X10- &, Integration of the equations of motion in the
rclativistic formalisin is sclf-consistent and has been shown to be so previously (Martin
ct. al. 1985; Rics cl. al. 1988). The masses of the Sun and the plancts derived from
the J'], planetary ephemerides (D1 200, de) include relativistic corrections.

Thus, using the Newtonian equations of motion along with the relativistically
dcetermined masses would in gencral yield a solution which is neither relativistically
correct (no relativistic precession ‘) nor non-refativistically consistent- a hybrid solu

tion.

V.ORBITA |, SOLUTIONEXPERIMENTS
We performed experiments to {it the relativistic and the hybrid models described
above to the observational data of a subset of objects for which the cumulative rel-
alivistic precession of the perilic lhon islarge. T'he subsctl was chosen from some 156
comets and asteroids commonly under study. We studied the full set by looking at
the rate of perilichion precession, the observational period, the numler of actualol-
scrval ions and the total amount of precession during the period of observation. Table

1 lists thetop 15 suchobjects ordered indecreasing total perihelion precession. The
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asteroid 1566 lcarus is at the top of the list. We have performed orbital fits to the
data available for several asteroids listed in Table 1. For six objects, Table 1Tincludes
the number and type of the available obscrvations, the observation interval and the
RMS residuals for the relativistic andthe hybrid hodels. The ordering here is by the
amount of improvement inthe RMS residual which for Jcarus is as much as 30%. 1t is
cvident that the dative improvement to the orbital solutions, when a consistent rel-
ativistic formulation is employed instead of the hybrid model, is inversely corrclated
to the orbital semi-latus rectum (p =« (1 - C°)) and proportional to the obser -
tioninterval and the amount of data available. Improved orbital clements for the six

asteroids in table 11 are given in table 111,
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TABLES

TABLYE 1. 15 asteroids with the largest periliclion precession rates.fl

Object Prec. Rate. ohs. Interval period Tot. Prec. to H/93
(arc.scc. /7 yr) (vyrs.) (yrs.) (arc. sec.)
1566 lcarus 0.101 43 1.119 4.34
2062 Ate]\ 0.043 37 0.950 1.59
1862 Apollo 0.021 b7 1.785 1.20
2100 Ra-Shalom 0.075 15 0.759 113
1685 Toro 0.022 44 1.598 0.97
2101 Adonis 0.019 48 2.567 0.91
3753 (1986 ‘() 0.053 l9 0.997 0.90
433 LFros 0.016 56 1.761 0.90
1620 Geographos 0.025 35 1.389 0.88
3200 Phaethon 0.101 8 1.423 0.81
1865 Cerberus 0.040 18 1.123 0.72
5143 lleracles 0.021 30 2484 0.63
1951 Lick 0.017 36 1.640 0.61
1627 lvar 0.010 61 2.514 0.61
2340 Hathor 0.074 7 0.775 0.52
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*Orbital solutions for G asteroids that are aflected by relativistic eflects. In cach case,
JPL developinent ephemeris D200 was used. For cach object listed, the number of
optical and radar (time delay andDoppler) observations are given along with the data
interval over which the orbit was cornputed. For the RMS orbit residual, the first
line for cach object gives the value when purcly Newtonian equations of motion were
cimployed while the second line gives the saine information when relativistic equ ations
of 1otion were used.

TABLYE 11, Thesix asteroids und er study, their observations and their RMS residuals.
Yor those asteroids without radar data, theunits of the RMS residuals are inarce seconds.
Otherwise the RMS residuals arc normalized, unitless values. That is, cach orbit residual
(in arcscc, Hz, or microseconds) was ?i \ided by its observation weight in the same units

before the RMS value was computed.

Observations RMS
optical delay Doppler Data Interval Resid.

1566 Jcarus 466 - 9 06/27/49 - 10/1 2/92 1.42
(.99

1862 Apollo 99 4 8 01/27/32- 12/29/8{) 1.33
117

3200 Phacthon 92 10/1? /83- 11/29/92 1.01
0.97

3753(1986 () 67 10/17/73- 08/25/92 1.08
1.06

2100 Ra-Shalom 75 - 2 10/0 770)- 10/09/91 (). 99
0.98

2062 Aten 65 - - 12/17/55- 10/06/92” 1.21

13
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TABLY 111,

Orbital clements for 6 asteroids whose inotion is significantly aflected by

general relativistic effects. Fach orbit was computedusing J 1’1 ’s 1 development Ephemeris

DE200 with the Barth and moon perturbations treated seperately.  The normalized rm s

orbital residuals andthe employed astrometric data arc given intable 11. The angles are

given in degrees and refer to the ecliptic plane and J2000 equinox.

} ‘or the six orbital

clements corrected in the orbit determination p rocess, the fornal standard deviations are

given in parentheses in units of the last decimal place. The given orbital clements are

respectively the eccentricity, the perihelion distance in AU, the time of perihelion passage

('1'1)11), theargument of perihelion, the longitude of the ascending node, the inclination,

semi-major axis in AU and the mean anomaly in degrees.

Fpoch
¢

q

e

w
Node

i

MA

Epoch

(4]

q

1566 Jcarus

1994 ¥eb 17.0 (TH1B)
().826694124 (109)
0.186836585 (1 18)

1994 Jan 27.7429529 (217)
31.2248612 (127)
88.1537825(55)
*22.8790200(249)

1078074153
17.8364024

3753 (1986 10)
19941eh 1'7.001'1)112)
0.514811131 (2438)

().484()91097 (2440)

1862 Apollo

1994 Yeb 17.0 (T1)B)
0.559941362 (33)
0.647353126 (49)

1995 Jan  2.7165230(102)
285.6391790(584)
35.9330697(579)

6.3562961 (239)

1.471061059
1s3.386s217

2100 Ra-Shalom

1994 ¥eh 17.() (1'1)11)
0.43645 6:323(2411)

0.468895485 (198)
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3200 Phacthon

1994 Yeb 17.0 (T1)1B)
0.890151589(136)
0.139653993(176)

1993 Sep 12.7348078 (2513)
32].8104926 (355)
?65.5970894 (370)

22.0974651 (363)

1.271333759
108,1302769

2062 Atlen

1994Feb 17.() ('1'1)11)
0.182583091 (379)

0.790133591 (363)




'J\
W
Node

j

MA

1994 Jan 15.4? 33736 (1890) 1994 Mar 31.4564282 (705)

43.6374549 (3497)
126.3950772(4619)

19.8110943(1086)

0.997737433

32.2170508

355.9447840 (504)
170.9613315 (273)

15.7555290(251)

0.832048169

304.865324'2
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1994 Jun 8.6636837 (1 129)

147.9154590 (1198)
108.6855738 (236)

18.9319604 (633)

0.966622518

?44,1941062



V]. CONCLUSIONS

We have studied the prominent effects arising {from the inclusion of general rela-
tivity in modcling the dynamics of asteroids and comets. We have demonstrated that
for a particular set of objects with simall scini-inajor axes and large cceent ricitics,
rclativistic effects can play a major role in dynamical modeling of such objects. An
important purpose of this work has been to show that for such objects, exclusion of
relativity cffects, while using solar- system nasses derived fromrelativistically derived
cphemerides (suchi as D 15200), will in general result ininconsistent solutions for the
dynamical parameters. We haveshownthat such orbital solutions are neither rela-
tivistically correct 1101 consistent with a completely non-relativistic model; i. ¢. they
correspond to a hybrid model. Finally we performed experiments to derive the RM S
residual resulting from solutions to the available data using the current JPL pro-
grams. This was done with both the fully relativistic model and the hybrid version.
The conclusion is that inthe more extreme relativistic cases, the relativistic model
yiclds smaller residuals. Inthe case of the asteroid 1566 lcarus, the improvement in

the RMS residual is as large as 30%.
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